3.4.61 \(\int \frac {x^4 \sqrt {d+e x^2}}{a+b x^2+c x^4} \, dx\) [361]

Optimal. Leaf size=390 \[ \frac {x \sqrt {d+e x^2}}{2 c}-\frac {\left (b c d-b^2 e+a c e-\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{c^2 \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {\left (b c d-b^2 e+a c e+\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{c^2 \sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}+\frac {(c d-2 b e) \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 c^2 \sqrt {e}} \]

[Out]

1/2*(-2*b*e+c*d)*arctanh(x*e^(1/2)/(e*x^2+d)^(1/2))/c^2/e^(1/2)+1/2*x*(e*x^2+d)^(1/2)/c-arctan(x*(2*c*d-e*(b-(
-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b*c*d-b^2*e+a*c*e+(-3*a*b*c*e+2*a*c^2
*d+b^3*e-b^2*c*d)/(-4*a*c+b^2)^(1/2))/c^2/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-
arctan(x*(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(b*c*d-b^2*e+a*c
*e+(3*a*b*c*e-2*a*c^2*d-b^3*e+b^2*c*d)/(-4*a*c+b^2)^(1/2))/c^2/(b+(-4*a*c+b^2)^(1/2))^(1/2)/(2*c*d-e*(b+(-4*a*
c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 2.18, antiderivative size = 390, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {1305, 396, 223, 212, 1706, 385, 211} \begin {gather*} -\frac {\left (-\frac {3 a b c e-2 a c^2 d+b^3 (-e)+b^2 c d}{\sqrt {b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \text {ArcTan}\left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{c^2 \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}-\frac {\left (\frac {3 a b c e-2 a c^2 d+b^3 (-e)+b^2 c d}{\sqrt {b^2-4 a c}}+a c e+b^2 (-e)+b c d\right ) \text {ArcTan}\left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{c^2 \sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}+\frac {(c d-2 b e) \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 c^2 \sqrt {e}}+\frac {x \sqrt {d+e x^2}}{2 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^4*Sqrt[d + e*x^2])/(a + b*x^2 + c*x^4),x]

[Out]

(x*Sqrt[d + e*x^2])/(2*c) - ((b*c*d - b^2*e + a*c*e - (b^2*c*d - 2*a*c^2*d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a
*c])*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(c^2*S
qrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) - ((b*c*d - b^2*e + a*c*e + (b^2*c*d - 2*a
*c^2*d - b^3*e + 3*a*b*c*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sq
rt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(c^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])
+ ((c*d - 2*b*e)*ArcTanh[(Sqrt[e]*x)/Sqrt[d + e*x^2]])/(2*c^2*Sqrt[e])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 1305

Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Dist[f
^4/c^2, Int[(f*x)^(m - 4)*(c*d - b*e + c*e*x^2)*(d + e*x^2)^(q - 1), x], x] - Dist[f^4/c^2, Int[(f*x)^(m - 4)*
(d + e*x^2)^(q - 1)*(Simp[a*(c*d - b*e) + (b*c*d - b^2*e + a*c*e)*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; Free
Q[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[q] && GtQ[q, 0] && GtQ[m, 3]

Rule 1706

Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandInteg
rand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x^2] && NeQ[b
^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x^4 \sqrt {d+e x^2}}{a+b x^2+c x^4} \, dx &=\frac {\int \frac {c d-b e+c e x^2}{\sqrt {d+e x^2}} \, dx}{c^2}-\frac {\int \frac {a (c d-b e)+\left (b c d-b^2 e+a c e\right ) x^2}{\sqrt {d+e x^2} \left (a+b x^2+c x^4\right )} \, dx}{c^2}\\ &=\frac {x \sqrt {d+e x^2}}{2 c}-\frac {\int \left (\frac {b c d-b^2 e+a c e+\frac {-b^2 c d+2 a c^2 d+b^3 e-3 a b c e}{\sqrt {b^2-4 a c}}}{\left (b-\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}}+\frac {b c d-b^2 e+a c e-\frac {-b^2 c d+2 a c^2 d+b^3 e-3 a b c e}{\sqrt {b^2-4 a c}}}{\left (b+\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}}\right ) \, dx}{c^2}+\frac {(c d-2 b e) \int \frac {1}{\sqrt {d+e x^2}} \, dx}{2 c^2}\\ &=\frac {x \sqrt {d+e x^2}}{2 c}+\frac {(c d-2 b e) \text {Subst}\left (\int \frac {1}{1-e x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{2 c^2}-\frac {\left (b c d-b^2 e+a c e-\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\left (b-\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{c^2}-\frac {\left (b c d-b^2 e+a c e+\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\left (b+\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{c^2}\\ &=\frac {x \sqrt {d+e x^2}}{2 c}+\frac {(c d-2 b e) \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 c^2 \sqrt {e}}-\frac {\left (b c d-b^2 e+a c e-\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{b-\sqrt {b^2-4 a c}-\left (-2 c d+\left (b-\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{c^2}-\frac {\left (b c d-b^2 e+a c e+\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {1}{b+\sqrt {b^2-4 a c}-\left (-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{c^2}\\ &=\frac {x \sqrt {d+e x^2}}{2 c}-\frac {\left (b c d-b^2 e+a c e-\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{c^2 \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {\left (b c d-b^2 e+a c e+\frac {b^2 c d-2 a c^2 d-b^3 e+3 a b c e}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{c^2 \sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}+\frac {(c d-2 b e) \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {d+e x^2}}\right )}{2 c^2 \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(10915\) vs. \(2(390)=780\).
time = 16.33, size = 10915, normalized size = 27.99 \begin {gather*} \text {Result too large to show} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^4*Sqrt[d + e*x^2])/(a + b*x^2 + c*x^4),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.16, size = 294, normalized size = 0.75

method result size
risch \(\frac {x \sqrt {e \,x^{2}+d}}{2 c}-\frac {\ln \left (\sqrt {e}\, x +\sqrt {e \,x^{2}+d}\right ) \sqrt {e}\, b}{c^{2}}+\frac {\ln \left (\sqrt {e}\, x +\sqrt {e \,x^{2}+d}\right ) d}{2 c \sqrt {e}}+\frac {\sqrt {e}\, \left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{4}+\left (4 e b -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{2} e b -4 c \,d^{3}\right ) \textit {\_Z} +d^{4} c \right )}{\sum }\frac {\left (\left (a c e -b^{2} e +b c d \right ) \textit {\_R}^{2}+2 \left (-2 a b \,e^{2}+a c d e +b^{2} d e -b c \,d^{2}\right ) \textit {\_R} +a \,d^{2} e c -b^{2} d^{2} e +b c \,d^{3}\right ) \ln \left (\left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )^{2}-\textit {\_R} \right )}{c \,\textit {\_R}^{3}+3 \textit {\_R}^{2} b e -3 \textit {\_R}^{2} c d +8 \textit {\_R} a \,e^{2}-4 \textit {\_R} b d e +3 c \,d^{2} \textit {\_R} +d^{2} e b -c \,d^{3}}\right )}{2 c^{2}}\) \(290\)
default \(\frac {\frac {x \sqrt {e \,x^{2}+d}}{2}+\frac {d \ln \left (\sqrt {e}\, x +\sqrt {e \,x^{2}+d}\right )}{2 \sqrt {e}}}{c}+\frac {\sqrt {e}\, \left (\frac {b \ln \left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )}{c}-\frac {\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{4}+\left (4 e b -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{2} e b -4 c \,d^{3}\right ) \textit {\_Z} +d^{4} c \right )}{\sum }\frac {\left (\left (-a c e +b^{2} e -b c d \right ) \textit {\_R}^{2}+2 \left (2 a b \,e^{2}-a c d e -b^{2} d e +b c \,d^{2}\right ) \textit {\_R} -a \,d^{2} e c +b^{2} d^{2} e -b c \,d^{3}\right ) \ln \left (\left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )^{2}-\textit {\_R} \right )}{c \,\textit {\_R}^{3}+3 \textit {\_R}^{2} b e -3 \textit {\_R}^{2} c d +8 \textit {\_R} a \,e^{2}-4 \textit {\_R} b d e +3 c \,d^{2} \textit {\_R} +d^{2} e b -c \,d^{3}}}{2 c}\right )}{c}\) \(294\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

1/c*(1/2*x*(e*x^2+d)^(1/2)+1/2*d/e^(1/2)*ln(e^(1/2)*x+(e*x^2+d)^(1/2)))+1/c*e^(1/2)*(b/c*ln((e*x^2+d)^(1/2)-e^
(1/2)*x)-1/2/c*sum(((-a*c*e+b^2*e-b*c*d)*_R^2+2*(2*a*b*e^2-a*c*d*e-b^2*d*e+b*c*d^2)*_R-a*d^2*e*c+b^2*d^2*e-b*c
*d^3)/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*d^3)*ln(((e*x^2+d)^(1/2)-e^(1/2
)*x)^2-_R),_R=RootOf(c*_Z^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+(4*b*d^2*e-4*c*d^3)*_Z+d^4*c)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(x^2*e + d)*x^4/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 3310 vs. \(2 (353) = 706\).
time = 15.60, size = 3310, normalized size = 8.49 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/4*(sqrt(1/2)*c^2*sqrt(-((b^3*c - 3*a*b*c^2)*d - (b^4 - 4*a*b^2*c + 2*a^2*c^2)*e - (b^2*c^4 - 4*a*c^5)*sqrt((
(b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b
^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5))*e*log(-((a*b^3*c - a^2*b*c^2)*d^2*x^2 + (a*b^2*c^4 - 4
*a^2*c^5)*d*x^2*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6
 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)) + 4*(a^2*b^3 - 2*a^3*b*c)*x^2*e^2 - 2*(a^2*b^2*c - a^3
*c^2)*d^2 + 2*sqrt(1/2)*((b^5*c - 5*a*b^3*c^2 + 4*a^2*b*c^3)*d*x - (b^6 - 6*a*b^4*c + 8*a^2*b^2*c^2)*x*e + (b^
4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)*x*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^
2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))*sqrt(x^2*e + d)*sqrt(-((b^3*c - 3*
a*b*c^2)*d - (b^4 - 4*a*b^2*c + 2*a^2*c^2)*e - (b^2*c^4 - 4*a*c^5)*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2
 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))/(b
^2*c^4 - 4*a*c^5)) - ((a*b^4 + 2*a^2*b^2*c - 4*a^3*c^2)*d*x^2 - 2*(a^2*b^3 - 2*a^3*b*c)*d)*e)/x^2) - sqrt(1/2)
*c^2*sqrt(-((b^3*c - 3*a*b*c^2)*d - (b^4 - 4*a*b^2*c + 2*a^2*c^2)*e - (b^2*c^4 - 4*a*c^5)*sqrt(((b^4*c^2 - 2*a
*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(
b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5))*e*log(-((a*b^3*c - a^2*b*c^2)*d^2*x^2 + (a*b^2*c^4 - 4*a^2*c^5)*d*x^
2*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c +
 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)) + 4*(a^2*b^3 - 2*a^3*b*c)*x^2*e^2 - 2*(a^2*b^2*c - a^3*c^2)*d^2 - 2*
sqrt(1/2)*((b^5*c - 5*a*b^3*c^2 + 4*a^2*b*c^3)*d*x - (b^6 - 6*a*b^4*c + 8*a^2*b^2*c^2)*x*e + (b^4*c^4 - 6*a*b^
2*c^5 + 8*a^2*c^6)*x*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e +
 (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))*sqrt(x^2*e + d)*sqrt(-((b^3*c - 3*a*b*c^2)*d - (
b^4 - 4*a*b^2*c + 2*a^2*c^2)*e - (b^2*c^4 - 4*a*c^5)*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c -
3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c
^5)) - ((a*b^4 + 2*a^2*b^2*c - 4*a^3*c^2)*d*x^2 - 2*(a^2*b^3 - 2*a^3*b*c)*d)*e)/x^2) + sqrt(1/2)*c^2*sqrt(-((b
^3*c - 3*a*b*c^2)*d - (b^4 - 4*a*b^2*c + 2*a^2*c^2)*e + (b^2*c^4 - 4*a*c^5)*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2
*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*
c^9)))/(b^2*c^4 - 4*a*c^5))*e*log(-((a*b^3*c - a^2*b*c^2)*d^2*x^2 - (a*b^2*c^4 - 4*a^2*c^5)*d*x^2*sqrt(((b^4*c
^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2
)*e^2)/(b^2*c^8 - 4*a*c^9)) + 4*(a^2*b^3 - 2*a^3*b*c)*x^2*e^2 - 2*(a^2*b^2*c - a^3*c^2)*d^2 + 2*sqrt(1/2)*((b^
5*c - 5*a*b^3*c^2 + 4*a^2*b*c^3)*d*x - (b^6 - 6*a*b^4*c + 8*a^2*b^2*c^2)*x*e - (b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*
c^6)*x*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^
4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))*sqrt(x^2*e + d)*sqrt(-((b^3*c - 3*a*b*c^2)*d - (b^4 - 4*a*b^2*
c + 2*a^2*c^2)*e + (b^2*c^4 - 4*a*c^5)*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 +
2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5)) - ((a*b^4
 + 2*a^2*b^2*c - 4*a^3*c^2)*d*x^2 - 2*(a^2*b^3 - 2*a^3*b*c)*d)*e)/x^2) - sqrt(1/2)*c^2*sqrt(-((b^3*c - 3*a*b*c
^2)*d - (b^4 - 4*a*b^2*c + 2*a^2*c^2)*e + (b^2*c^4 - 4*a*c^5)*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*
(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^
4 - 4*a*c^5))*e*log(-((a*b^3*c - a^2*b*c^2)*d^2*x^2 - (a*b^2*c^4 - 4*a^2*c^5)*d*x^2*sqrt(((b^4*c^2 - 2*a*b^2*c
^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^
8 - 4*a*c^9)) + 4*(a^2*b^3 - 2*a^3*b*c)*x^2*e^2 - 2*(a^2*b^2*c - a^3*c^2)*d^2 - 2*sqrt(1/2)*((b^5*c - 5*a*b^3*
c^2 + 4*a^2*b*c^3)*d*x - (b^6 - 6*a*b^4*c + 8*a^2*b^2*c^2)*x*e - (b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)*x*sqrt(((
b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d*e + (b^6 - 4*a*b^4*c + 4*a^2*b^
2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))*sqrt(x^2*e + d)*sqrt(-((b^3*c - 3*a*b*c^2)*d - (b^4 - 4*a*b^2*c + 2*a^2*c^2)
*e + (b^2*c^4 - 4*a*c^5)*sqrt(((b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^2 - 2*(b^5*c - 3*a*b^3*c^2 + 2*a^2*b*c^3)*d
*e + (b^6 - 4*a*b^4*c + 4*a^2*b^2*c^2)*e^2)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5)) - ((a*b^4 + 2*a^2*b^2*c
 - 4*a^3*c^2)*d*x^2 - 2*(a^2*b^3 - 2*a^3*b*c)*d)*e)/x^2) + 2*sqrt(x^2*e + d)*c*x*e - (c*d - 2*b*e)*e^(1/2)*log
(-2*x^2*e + 2*sqrt(x^2*e + d)*x*e^(1/2) - d))*e^(-1)/c^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4} \sqrt {d + e x^{2}}}{a + b x^{2} + c x^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(e*x**2+d)**(1/2)/(c*x**4+b*x**2+a),x)

[Out]

Integral(x**4*sqrt(d + e*x**2)/(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [A]
time = 5.44, size = 53, normalized size = 0.14 \begin {gather*} -\frac {{\left (c d - 2 \, b e\right )} e^{\left (-\frac {1}{2}\right )} \log \left ({\left (x e^{\frac {1}{2}} - \sqrt {x^{2} e + d}\right )}^{2}\right )}{4 \, c^{2}} + \frac {\sqrt {x^{2} e + d} x}{2 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(e*x^2+d)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

-1/4*(c*d - 2*b*e)*e^(-1/2)*log((x*e^(1/2) - sqrt(x^2*e + d))^2)/c^2 + 1/2*sqrt(x^2*e + d)*x/c

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^4\,\sqrt {e\,x^2+d}}{c\,x^4+b\,x^2+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4*(d + e*x^2)^(1/2))/(a + b*x^2 + c*x^4),x)

[Out]

int((x^4*(d + e*x^2)^(1/2))/(a + b*x^2 + c*x^4), x)

________________________________________________________________________________________